sábado, 5 de abril de 2014

El Universo Parte II

¿Qué es el Universo?

El Universo es todo, sin excepciones.
Materia, energía, espacio y tiempo, todo lo que existe forma parte del Universo. Es muy grande, pero no infinito. Si lo fuera, habría infinita materia en infinitas estrellas, y no es así. En cuanto a la materia, el universo es, sobre todo, espacio vacío.
El Universo contiene galaxias, cúmulos de galaxias y estructuras de mayor tamaño llamadas supercúmulos, además de materia intergaláctica. Todavía no sabemos con exactitud la magnitud del Universo, a pesar de la avanzada tecnología disponible en la actualidad.
La materia no se distribuye de manera uniforme, sino que se concentra en lugares concretos: galaxias, estrellas, planetas ... Sin embargo, el 90% del Universo es una masa oscura, que no podemos observar. Por cada millón de átomos de hidrógeno los 10 elementos más abundantes son:
Símbolo
Elemento químico
Átomos
H
Hidrógeno
1.000.000
He
Helio
63.000
O
Oxígeno
690
C
Carbono
420
N
Nitrógeno
87
Si
Silicio
45
Mg
Magnesio
40
Ne
Neón
37
Fe
Hierro
32
S
Azufre
16

Nuestro lugar en el Universo
Nuestro mundo, la Tierra, es minúsculo comparado con el Universo. Formamos parte del Sistema Solar, perdido en un brazo de una galaxia que tiene 100.000 millones de estrellas, pero sólo es una entre los centenares de miles de millones de galaxias que forman el Universo.



La teoría del Big Bang explica cómo se formó
Dice que hace unos 13.700 millones de años la materia tenía una densidad y una temperatura infinitas. Hubo una explosión violenta y, desde entonces, el universo va perdiendo densidad y temperatura.
El Big Bang es una singularidad, una excepción que no pueden explicar las leyes de la física. Podemos saber qué pasó desde el primer instante, pero el momento y tamaño cero todavía no tienen explicación científica.



Observación del Cosmos
Desde sus orígenes, la especie humana ha observado el cielo. Primero, directamente, después con instrumentos cada vez más potentes.
Las antiguas civilizaciones agrupaban las estrellas formando figuras. Nuestras constelaciones se inventaron en el Mediterráneo oriental hace unos 2.500 años. Representan animales y mitos del lugar y la época. La gente creía que los cuerpos del cielo influían la vida de reyes y súbditos. El estudio de los astros se mezclaba con supersticiones y rituales.
Las constelaciones que acompañan la trayectoria del Sol, la Luna y los planetas, en la franja llamada zodíaco, nos resultan familiares: Aries, Tauro, Géminis, Cáncer, Leo, Virgo, Libra, Escorpión, Sagitario, Capricornio, Acuario y Piscis.
A principios del siglo XVII se inventó el telescopio. Primero se utilizaron lentes, después espejos, también combinaciones de ambos. Actualmente hay telescopios de muy alta resolución, como el VLT, formado por cuatro telescopios sincronizados.
El telescopio espacial Hubble (HST), situado en órbita, captura y envía imágenes y datos sin la distorsión provocada por la atmósfera.
Los radiotelescopios detectan radiaciones de muy diferentes longitudes de onda. Trabajan en grupos utilizando una técnica llamada interferometría.

La fotografía, la informática, las comunicaciones y, en general, los avances técnicos de los últimos años han ayudado muchísimo a la astronomía.
Gracias a los espectros, producidos por la descomposición de la luz, podemos conocer información detallada sobre la composición química de un objeto. También se aplica al conocimiento del Universo.
Las constelaciones
Las estrellas que se pueden observar en una noche clara forman determinadas figuras que llamamos "constelaciones", y que sirven para localizar más fácilmente la posición de los astros. En total, hay 88 agrupaciones de estrellas que aparecen en la esfera celeste y que toman su nombre de figuras religiosas o mitológicas, animales u objetos. Este término también se refiere a áreas delimitadas de la esfera celeste que comprenden los grupos de estrellas con nombre.
Los dibujos de constelaciones más antiguos que se conocen señalan que las constelaciones ya habían sido establecidas el 4000 a.C. Los sumerios le dieron el nombre a la constelación Acuario, en honor a su dios An, que derrama el agua de la inmortalidad sobre la Tierra. Los babilonios ya habían dividido el zodíaco en 12 signos iguales hacia el 450 a.C.
Las actuales constelaciones del hemisferio norte se diferencian poco de las que conocían los caldeos y los antiguos egipcios. Homero y Hesíodo mencionaron las constelaciones y el poeta griego Arato de Soli, dio una descripción en verso de 44 constelaciones en su Phaenomena. Tolomeo, astrónomo y matemático griego, en el Almagesto, describió 48 constelaciones, de las cuales, 47 se siguen conociendo por el mismo nombre.
Muchos otras culturas agruparon las estrellas en constelaciones, aunque no siempres se corresponden con las de Occidente. Sin embargo, algunas constelaciones chinas se parecen a las occidentales, lo que induce a pensar en la posibilidad de un origen común.
A finales del siglo XVI, los primeros exploradores europeos de los mares del Sur trazaron mapas del hemisferio austral. El navegante holandés Pieter Dirckz Keyser, que participó en la exploración de las Indias orientales en 1595 añadió nuevas constelaciones. Más tarde fueron añadidas otras constelaciones del hemisferio sur por el astrónomo alemán Johann Bayer,que publicó el primer atlas celeste extenso.
Muchos otros propusieron nuevas constelaciones, pero los astrónomos acordaron finalmente una lista de 88. No obstante, los límites de las constelaciones siguieron siendo tema de discusión hasta 1930, cuando la Unión Astronómica Internacional fijó dichos límites.
Para designar las aproximadamente 1.300 estrellas brillantes, se utiliza el genitivo del nombre de las constelaciones, precedido por una letra griega; este sistema fue introducido por Johann Bayer. Por ejemplo, a la famosa estrella Algol, en la constelación Perseo, se le llama Beta Persei.
Entre las constelaciones más conocidas se hallan las que se encuentran en el plano de la órbita de la Tierra sobre el fondo de las estrellas fijas. Son las constelaciones del Zodíaco. Ademas de estas, algunas muy conocidas son Cruz del Sur, visible desde el hemisferiosur, y Osa Mayor, visible desde el hemisferio Norte. Estas y otras constelaciones permiten ubicar la posición de importantes puntos de referencia como, por ejemplo, los polos celestes.
La mayor constelación de la esfera celeste es la de Hydra, que contiene 68 estrellas visibles a simple vista. La Cruz del Sur, por su parte, es la constelación más pequeña.

Clasificación de las Estrellas
El estudio fotográfico de los espectros estelares lo inició en 1885 el astrónomo Edward Pickering en el observatorio del Harvard College y lo concluyó su colega Annie J. Cannon. Esta investigación condujo al descubrimiento de que los espectros de las estrella están dispuestos en una secuencia continua según la intensidad de ciertas líneas de absorción. Las observaciones proporcionan datos de las edades de las diferentes estrellas y de sus grados de desarrollo.
Las diversas etapas en la secuencia de los espectros, designadas con las letras O, B, A, F, G, K y M, permiten una clasificación completa de todos los tipos de estrellas. Los subíndices del 0 al 9 se utilizan para indicar las sucesiones en el modelo dentro de cada clase.
Clase O: Líneas del helio, el oxígeno y el nitrógeno, además de las del hidrógeno. Comprende estrellas muy calientes, e incluye tanto las que muestran espectros de línea brillante del hidrógeno y el helio como las que muestran líneas oscuras de los mismos elementos.
Clase B: Líneas del helio alcanzan la máxima intensidad en la subdivisión B2 y palidecen progresivamente en subdivisiones más altas. La intensidad de las líneas del hidrógeno aumenta de forma constante en todas las subdivisiones. Este grupo está representado por la estrella Epsilon Orionis.
Clase A: Comprende las llamadas estrellas de hidrógeno con espectros dominados por las líneas de absorción del hidrógeno. Una estrella típica de este grupo es Sirio.
Clase F: En este grupo destacan las llamadas líneas H y K del calcio y las líneas características del hidrógeno. Una estrella notable en esta categoría es Delta Aquilae.
Clase G: Comprende estrellas con fuertes líneas H y K del calcio y líneas del hidrógeno menos fuertes. También están presentes los espectros de muchos metales, en especial el del hierro. El Sol pertenece a este grupo y por ello a las estrellas G se les denomina "estrellas de tipo solar".
Clase K: Estrellas que tienen fuertes líneas del calcio y otras que indican la presencia de otros metales. Este grupo está tipificado por Arturo.
Clase M; Espectros dominados por bandas que indican la presencia de óxidos metálicos, sobre todo las del óxido de titanio. El final violeta del espectro es menos intenso que el de las estrellas K. La estrella Betelgeuse es típica de este grupo.
Tamaño y brillo de las Estrellas
Las estrellas más grandes que se conocen son las supergigantes, con diámetros unas 400 veces mayores que el del Sol, en tanto que las estrellas conocidas como "enanas blancas" pueden tener diámetros de sólo una centésima del Sol. Sin embargo, las estrellas gigantes suelen ser difusas y pueden tener una masa apenas unas 40 veces mayor que la del Sol, mientras que las enanas blancas son muy densas a pesar de su pequeño tamaño.
Puede haber estrellas con una masa 1.000 veces mayor que la del Sol y, a escala menor, bolas de gas caliente demasiado pequeñas para desencadenar reacciones nucleares. Un objeto que puede ser de este tipo (una enana marrón) fue observado por primera vez en 1987, y desde entonces se han detectado otros.
El brillo de las estrellas se describe en términos de magnitud. Las estrellas más brillantes pueden ser hasta 1.000.000 de veces más brillantes que el Sol; las enanas blancas son unas 1.000 veces menos brillantes.
Las clases establecidas por Annie Jump Cannon se identifican con colores:
- Color azul, como la estrella I Cephei
- Color blanco-azul, como la estrella Spica
- Color blanco, como la estrella Vega
- Color blanco-amarillo, como la estrella Proción
- Color amarillo, como el Sol
- Color naranja, como Arcturus
- Color rojo, como la estrella Betelgeuse.
A menudo las estrellas se nombran usando la referencia a su tamaño y a su color: enanas blancas, gigantes rojas, ...

Evolución de las Estrellas
Las estrellas evolucionan durante millones de años. Nacen cuando se acumula una gran cantidad de materia en un lugar del espacio. Se comprime y se calienta hasta que empieza una reacción nuclear, que consume la materia, convirtiéndola en energía. Las estrellas pequeñas la gastan lentamente y duran más que las grandes.
Las teorías sobre la evolución de las estrellas se basan en pruebas obtenidas de estudios de los espectros relacionados con la luminosidad. Las observaciones demuestran que muchas estrellas se pueden clasificar en una secuencia regular en la que las más brillantes son las más calientes y las más pequeñas, las más frías.
Esta serie de estrellas forma una banda conocida como la secuencia principal en el diagrama temperatura-luminosidad conocido como diagrama Hertzsprung-Russell. Otros grupos de estrellas que aparecen en el diagrama incluyen a las estrellas gigantes y enanas antes mencionadas.
La vida de una estrella
El ciclo de vida de una estrella empieza como una gran masa de gas relativamente fría. La contracción del gas eleva la temperatura hasta que el interior de la estrella alcanza 1.000.000 °C. En este punto tienen lugar reacciones nucleares, cuyo resultado es que los núcleos de los átomos de hidrógeno se combinan con los de deuteriopara formar núcleos de helio. Esta reacción libera grandes cantidades de energía, y se detiene la contracción de la estrella.
Cuando finaliza la liberación de energía, la contracción comienza de nuevo y la temperatura de la estrella vuelve a aumentar. En un momento dado empieza una reacción entre el hidrógeno, el litio y otros metales ligeros presentes en el cuerpo de la estrella. De nuevo se libera energía y la contracción se detiene.
Cuando el litio y otros materiales ligeros se consumen, la contracción se reanuda y la estrella entra en la etapa final del desarrollo en la cual el hidrógeno se transforma en helio a temperaturas muy altas gracias a la acción catalítica del carbono y el nitrógeno. Esta reacción termonuclear es característica de la secuencia principal de estrellas y continúa hasta que se consume todo el hidrógeno que hay.
La estrella se convierte en una gigante roja y alcanza su mayor tamaño cuando todo su hidrógeno central se ha convertido en helio. Si sigue brillando, la temperatura del núcleo debe subir lo suficiente como para producir la fusión de los núcleos de helio. Durante este proceso es probable que la estrella se haga mucho más pequeña y más densa.
Cuando ha gastado todas las posibles fuentes de energía nuclear, se contrae de nuevo y se convierte en una enana blanca. Esta etapa final puede estar marcada por explosiones conocidas como "novas". Cuando una estrella se libera de su cubierta exterior explotando como nova o supernova, devuelve al medio interestelar elementos más pesados que el hidrógeno que ha sintetizado en su interior.
Las generaciones futuras de estrellas formadas a partir de este material comenzarán su vida con un surtido más rico de elementos pesados que las anteriores generaciones. Las estrellas que se despojan de sus capas exteriores de una forma no explosiva se convierten en nebulosas planetarias, estrellas viejas rodeadas por esferas de gas que irradian en una gama múltiple de longitudes de onda.
De estrella a Agujero Negro
Las estrellas con una masa mucho mayor que la del Sol sufren una evolución más rápida, de unos pocos millones de años desde su nacimiento hasta la explosión de una supernova. Los restos de la estrella pueden ser una estrella de neutrones.
Sin embargo, existe un límite para el tamaño de las estrellas de neutrones, más allá del cual estos cuerpos se ven obligados a contraerse hasta que se convierten en un agujero negro, del que no puede escapar ninguna radiación.
Estrellas típicas como el Sol pueden persistir durante muchos miles de millones de años. El destino final de las enanas de masa baja es desconocido, excepto que cesan de irradiar de forma apreciable. Lo más probable es que se conviertan en cenizas o enanas negras.
Agujeros negros

Los llamados agujeros negros son cuerpos con un campo gravitatorio muy grande, enorme.
No puede escapar ninguna radiación electromagnética ni luminosa, por eso son negros. Están rodeados de una "frontera" esférica que permite que la luz entre pero no salga.
Hay dos tipos de agujeros negros: cuerpos de alta densidad y poca masa concentrada en un espacio muy pequeño, y cuerpos de densidad baja pero masa muy grande, como pasa en los centros de las galaxias.
Si la masa de una estrella es más de dos veces la del Sol, llega un momento en su ciclo en que ni tan solo los neutrones pueden soportar la gravedad. La estrella se colapsa y se convierte en agujero negro.
Stephen Hawking y los conos luminosos

El científico británico Stephen W. Hawking ha dedicado buena parte de su trabajo al estudio de los agujeros negros.
En su libro Historia del Tiempo explica cómo, en una estrella que se está colapsando, los conos luminosos que emite empiezan a curvarse en la superficie de la estrella.
Al hacerse pequeña, el campo gravitatorio crece y los conos de luz se inclinan cada vez más, hasta que ya no pueden escapar. La luz se apaga y se vuelve negro.
Si un componente de una estrella binaria se convierte en agujero negro, toma material de su compañera. Cuando el remolino se acerca al agujero, se mueve tan deprisa que emite rayos X. Así, aunque no se puede ver, se puede detectar por sus efectos sobre la materia cercana
Los agujeros negros no son eternos. Aunque no se escape ninguna radiación, parece que pueden hacerlo algunas partículas atómicas y subatómicas.
Alguien que observase la formación de un agujero negro desde el exterior, vería una estrella cada vez más pequeña y roja hasta que, finalmente, desaparecería. Su influencia gravitatoria, sin embargo, seguiría intacta.

Como en el Big Bang, en los agujeros negros se da una singularidad, es decir, las leyes físicas y la capacidad de predicción fallan. En consecuencia, ningún observador externo puede ver qué pasa dentro.
Las ecuaciones que intentan explicar una singularidad de los agujeros negros han de tener en cuenta el espacio y el tiempo. Las singularidades se situarán siempre en el pasado del observador (como el Big Bang) o en su futuro (como los colapsos gravitatorios). Esta hipótesis se conoce con el nombre de "censura cósmica".
La Vía Láctea
Un camino en el cielo
En noches serenas podemos ver una franja blanca que atraviesa el cielo de lado a lado, con muchas estrellas.
Son sólo una pequeña parte de nuestros vecinos. Entre todos formamos la Vía Láctea. Los romanos la llamaron "Camino de Leche", que es lo que significa via lactea en latín.
La Vía Láctea es nuestra galaxia

El Sistema Solar está en uno de los brazos de la espiral, a unos 30.000 años luz del centro y unos 20.000 del extremo.
La Via Láctea és una galaxia grande, espiral y puede tener unos 100.000 millones de estrellas, entre ellas, el Sol. En total wide unos 100.000 años luz de diámetro y tiene una masa de más de dos billones de veces la del Sol.
Cada 225 millones de años el Sistema Solar completa un giro alrededor del centro de la galaxia. Se mueve a unos 270 km. por segundo.
No podemos ver el brillante centro porque se interponen materiales opacos, polvo cósmico y gases fríos, que no dejan pasar la luz. Se cree que contiene un poderoso agujero negro.
La Vía Láctea tiene forma de lente convexa. El núcleo tiene una zona central de forma elíptica y unos 8.000 años luz de diámetro. Las estrellas del núcleo están más agrupadas que las de los brazos. A su alrededor hay una nube de hidrógeno, algunas estrellas y cúmulos estelares.
La Vía Láctea forma parte del Grupo Local
Junto con las galaxias de Andrómeda (M31) y del Triángulo (M33), las Nubes de Magallanes (satélites de la Vía Láctea), las galaxias M32 y M110 (satélites de Andrómeda), galaxias y nebulosas más pequeñas y otros sistemas menores, forman un grupo vinculado por la gravedad.
En total hay unas 30 galaxias que ocupan un área de unos 4 millones de años luz de diámetro.
Todo el gupo orbita alrededor del gran cúmulo de galaxias de Virgo, a unos 50 millones de años luz.

Origen del Universo

Edwin Hubble descubrió que el Universo se expande. La teoría de la relatividad general de Albert Einstein ya lo había previsto.
Rebobinar
Se ha comprobado que las galaxias se alejan, todavía hoy, las unas de las otras. Si pasamos la película al revés, ¿dónde llegaremos?
Los científicos intentan explicar el origen del Universo con diversas teorías, apoyadas en observaciones y unos cálculos matemáticos coherentes. Las más aceptadas son la del Big Bang y la teoría Inflacionaria, que se complementan entre si.
Teoría del Big Bang
La teoría del Big Bang o gran explosión, supone que, hace entre 13.700 y 13.900 millones de años, toda la materia del Universo estaba concentrada en una zona extraordinariamente pequeña del espacio, un único punto, y explotó. La materia salió impulsada con gran energía en todas direcciones.
Los choques que inevitablemente de sprodujeron y un cierto desorden hicieron que la materia se agrupara y se concentrase más en algunos lugares del espacio, y se formaron las primeras estrellas y las primeras galaxias. Desde entonces, el Universo continúa en constante movimiento y evolución.
Esta teoría sobre el origen del Universo se basa en observaciones rigurosas y es matemáticamente correcta desde un instante después de la explosión, pero no tiene una explicación para el momento cero del origen del Universo, llamado "singularidad".
Teoría inflacionaria
La teoría inflacionaria de Alan Guth intenta explicar el origen y los primeros instantes del Universo. Se basa en estudios sobre campos gravitatorios fortísimos, como los que hay cerca de un agujero negro.
La teoría inflacionaria supone que una fuerza única se dividió en las cuatro que ahora conocemos, produciendo el origen al Universo.
El empuje inicial duró un tiempo prácticamente inapreciable, pero la explosión fue tan violenta que, a pesar de que la atracción de la gravedad frena las galaxias, el Universo todavía crece, se expande.
Momento
Suceso
Big Bang
Densidad infinita, volumen cero.
10 e-43 segs.
Fuerzas no diferenciadas
10 e-34 segs.
Sopa de partículas elementales
10 e-10 segs.
Se forman protones y neutrones
1 seg.
10.000.000.000 º. Universo tamaño Sol  
3 minutos
1.000.000.000 º. Nucleos de átomos
30 minutos
300.000.000 º. Plasma
300.000 años
Átomos. Universo transparente
1.000.000 años
Gérmenes de galaxias
100 millones de años
Primeras galaxias
1.000 millones de años
Estrellas. El resto, se enfría
5.000 millones de años
Formación de la Vía Láctea
10.000 millones de años  
Sistema Solar y Tierra
No se puede imaginar el Big Bang como la explosión de un punto de materia en el vacío, porque en este punto se concentraban toda la materia, la energía, el espacio y el tiempo. No había ni "fuera" ni "antes". El espacio y el tiempo también se expanden con el Universo.

Transbordador espacial. Es un vehículo reutilizable de transporte espacial. La principal diferencia con los tradicionales cohetes es la posibilidad de su reingreso en la atmósfera terrestre, pudiendo realizar un aterrizaje totalmente controlado. El primero de estos fue lanzado por los Estados Unidos el 1 de febrero de 1981 luego de comenzar su desarrollo en la década del 60.
Los transbordadores de la NASA han sido utilizados en numerosas misiones, siempre llevando cargas pesadas y colocándolas en diferentes órbitas, misiones de mantenimiento como al telescopio espacial Hubble o de carga de suministros hacia y desde la Estación Espacial Internacional (ISS por sus siglas en inglés).

Datos técnicos

El transbordador espacial tiene los siguientes componentes principales: El propio vehículo transbordador Orbitador reutilizable. Dimensiones al estar sobre sus ruedas: 17,25 metros de altura (incluye cola timón), 37,24 metros de largo y envergadura 23,79 metros (entre extremo de las alas). Capacidad de tripulación: 5 a 7 personas.
Un gran tanque externo desechable de combustible (ET por sus siglas en inglés) que contiene hidrógeno y oxígeno líquidos en tanques interiores para alimentar los tres motores principales. El tanque se libera 8,5 minutos después del lanzamiento, a una altitud de 109 km, rompiéndose en pedazos que caen al mar sin ser recogidos. Dimensiones: 46,14 metros de altura y 8,28 metros de diámetro.
Dos tanques recuperables de combustible sólido (SRB por sus siglas en inglés) que contienen un propulsante compuesto principalmente de perclorato de amonio (oxidante, 70% en peso) y aluminio (combustible, 16% en peso). Ambos tanques se separan 2 minutos después del lanzamiento a una altura de 66 km, abren sus paracaídas y luego son recogidos tras su amerizaje. Dimensiones: 44,74 metros de altura y 3,65 metros de diámetro. Cada tanque pesa 96.000kilogramos.

La Luna

La Luna es el único satélite natural de la Tierra. Su diámetro es de unos 3.476 km, aproximadamente una cuarta parte del de la Tierra. La masa de la Tierra es 81 veces mayor que la de la Luna. La densidad media de la Luna es de sólo las tres quintas partes de la densidad de la Tierra, y la gravedad en la superficie es un sexto de la de la Tierra.
La Luna orbita la Tierra a una distancia media de 384.403 km y a una velocidad media de 3.700 km/h. Completa su vuelta alrededor de la Tierra, siguiendo una órbita elíptica, en 27 días, 7 horas, 43 minutos y 11,5 segundos. Para cambiar de una fase a otra similar, o mes lunar, la Luna necesita 29 días, 12 horas, 44 minutos y 2,8 segundos.
Como tarda en dar una vuelta sobre su eje el mismo tiempo que en dar una vuelta alrededor de la Tierra, siempre nos muestra la misma cara. Aunque parece brillante, sólo refleja en el espacio el 7% de la luz que recibe del Sol.
Después de la Tierra, la Luna es el cuerpo espacial más estudiado.

Movimientos de la Luna

La Luna es el único satélite natural de la Tierra. La luna gira alrededor de su eje (rotación) en aproximadamente 27.32 días (mes sidéreo) y se traslada alrededor de la Tierra (traslación) en el mismo intervalo de tiempo, de ahí que siempre nos muestra la misma cara. Además, nuestro satélite completa una revolución relativa al Sol en aproximadamente 29.53 días (mes sinódico), período en el cual comienzan a repetirse las fases lunares.
Los instantes de salida, tránsito y puesta del Sol y de la Luna están relacionados con las fases. La Luna se traslada alrededor de la Tierra en sentido directo, en dirección Este. Como el Sol se mueve 1° por día hacia el Este. La Luna atrasa diariamente su salida respecto a la del Sol unos 50 minutos.
Rotación y traslación de la Luna
La Luna gira alrededor de la Tierra aproximadamente una vez al mes. Si la Tierra no girara en un día completo, sería muy fácil detectar el movimiento de la Luna en su órbita. Este movimiento hace que la Luna avance alrededor de 12 grados en el cielo cada día.
Si la Tierra no rotara, lo que veríamos sería la Luna cruzando la bóveda celeste durante dos semanas, y luego se iría y tardaría dos semanas ausente, durante las cuales la Luna sería visible en el lado opuesto del Globo.
Sin embargo, la Tierra completa un giro cada día, mientras que la Luna se mueve en su órbita también hacia el este. Así, cada día le toma a la Tierra alrededor de 50 minutos más para estar de frente con la Luna nuevamente (lo cual significa que nosotros podemos ver la Luna en el Cielo.) El giro de la Tierra y el movimiento orbital de la Luna se combinan, de tal suerte que la salida de la Luna se retrasa del orden de 50 minutos cada día.
Las fases de la luna
Según la disposición de la Luna, la Tierra y el Sol, se ve iluminada una mayor o menor porción de la cara visible de la luna.

La Luna Nueva o novilunio es cuando la Luna está entre la Tierra y el Sol y por lo tanto no la vemos.
En el Cuarto Creciente, la Luna, la Tierra y el Sol forman un ángulo recto, por lo que se puede observar en el cielo la mitad de la Luna, en su período de crecimiento.
La Luna Llena o plenilunio ocurre cuando La Tierra se ubica entre el Sol y la Luna; ésta recibe los rayos del sol en su cara visible, por lo tanto, se ve completa.
Finalmente, en el Cuarto Menguante los tres cuerpos vuelven a formar ángulo recto, por lo que se puede observar en el cielo la otra mitad de la cara lunar.
Las fases de la luna son las diferentes iluminaciones que presenta nuestro satélite en el curso de un mes.
La órbita de la tierra forma un ángulo de 5º con la órbita de la luna, de manera que cuando la luna se encuentra entre el sol y la tierra, uno de sus hemisferios, el que nosotros vemos, queda en la zona oscura, y por lo tanto, queda invisible a nuestra vista: a esto le llamamos luna nueva o novilunio.
A medida que la luna sigue su movimiento de traslación, va creciendo la superficie iluminada visible desde la tierra, hasta que una semana más tarde llega a mostrarnos la mitad de su hemisferio iluminado; es el llamado cuarto creciente.
Una semana más tarde percibimos todo el hemisferio iluminado: es la llamada luna llena o plenilunio.
A la semana siguiente, la superficie iluminada empieza a decrecer o menguar, hasta llegar a la mitad: es el cuarto menguante.
Al final de la cuarta semana llega a su posición inicial y desaparece completamente de nuestra vista, para recomenzar un nuevo ciclo.

Los eclipses
Un eclipse es el oscurecimiento de un cuerpo celeste por otro. Como los cuerpos celestes no están quietos en el firmamento, a veces la sombra que uno proyecta tapa al otro, por lo que éste último se ve oscuro.
En el caso de la Tierra, la Luna y el Sol tenemos dos modalidades: eclipses de Sol, que consisten en el oscurecimiento del Sol visto desde la Tierra, debido a la sombra que la Luna proyecta; y eclipses de Luna, que son el oscurecimiento de la Luna vista desde la Tierra, debido que ésta se situa en la zona de sombra que proyecta la Tierra.

Si colocamos una pelota entre la luz y la pared se observará sobre la pared una sombra circular intensa y otra mayor, pero más débil. De igual manera, la luna y la tierra proyectan en el espacio gigantescos conos de sombra producidos por la iluminación del sol.
Cuando la luna se interpone entre la tierra y el sol, el cono de su sombra se proyecta sobre una zona de la tierra, y las personas que habitan en esa zona quedan en la oscuridad, como si fuese de noche, porque la luna eclipsa, tapa al sol. Este astro se ve como cubierto, que no es otra cosa sino la luna. Esto es un eclipse de sol.
Del mismo modo, cuando la luna cruza el cono de sombra de la tierra, desaparece a la vista de los habitantes del hemisferio no iluminado (noche) los cuales pueden presenciar, en su totalidad, el eclipse de luna.
El eclipse de sol se produce solamente sobre una pequeña faja de la tierra, porque la luna, por su menor tamaño, no oculta completamente al sol para la totalidad de la tierra.
Los eclipses de luna pueden ser de dos tipos: Totales: cuando están en el cono de sombra de la tierra, y parciales: cuando sólo se introduce parcialmente en la sombra.
Por su parte, los eclipses de sol pueden ser de tres tipos:
Totales: Cuando la luna se interpone entre el sol y la tierra, Y los habitantes no ven la luz solar durante algunos minutos.
Parciales: Cuando la penumbra abarca una extensión de tierra y los habitantes que están en ella sólo ven una porción de sol.
Anulares: Cuando el cono de sombra de la luna no llega hasta la tierra porque se encuentra demasiado lejos del planeta para ocultar el disco solar.
El cono de sombra se divide en dos partes: umbra o sombra total, y penumbra o sombra parcial. Para las personas que se encuentran en la zona de la umbra, el eclipse será total, mientras que para las personas que se encuentran en la penumbra el eclipse será parcial. La faja de sombra o umbra es de 270 Km. Y la penumbra alcanza hasta 6400 Km de anchura. En un año puede haber un máximo de 7 eclipses y un mínimo de 2.